Looking to the article 'Telegraph (Electric)' in the last volume of the old edition of the 'Encyclopaedia Britannica,' which was published about the year 1861, we find on record that Jenkin's measurements in absolute units of the specific resistance of pure gutta-percha, and of the gutta-percha with Chatterton's compound constituting the insulation of the Red Sea cable of 1859, are given as the only results in the way of absolute measurements of the electric resistance of an insulating material which had then been made. These remarks are prefaced in the 'Encyclopaedia' article by the following statement: 'No telegraphic testing ought in future to be accepted in any department of telegraphic business which has not this definite character; although it is only within the last year that convenient instruments for working, in absolute measure, have been introduced at all, and the whole system of absolute measure is still almost unknown to practical electricians.'

A particular result of great importance in respect to testing is referred to as follows in the 'Encyclopaedia' article: 'The importance of having results thus stated in absolute measure is illustrated by the circumstance, that the writer has been able at once to compare them, in the manner stated in a preceding paragraph, with his own previous deductions from the testings of the Atlantic cable during its manufacture in 1857, and with Weber's measurements of the specific resistance of copper.' It has now become universally adapted - first of all in England; twenty-two years later by Germany, the country of its birth; and by France and Italy, and all the other countries of Europe and America - practically the whole scientific world - at the Electrical Congress in Paris in the years 1882 and 1884.

An important paper of thirty quarto pages published in the 'Transactions of the Royal Society' for June 19, 1862, under the title 'Experimental Researches on the Transmission of Electric Signals through submarine cables, Part I. Laws of Transmission through various lengths of one cable, by Fleeming Jenkin, Esq., communicated by C. Wheatstone, Esq., F.R.S.,' contains an account of a large part of Jenkin's experimental work in the Birkenhead factory during the years 1859 and 1860. This paper is called Part I. Part II. alas never appeared, but something that it would have included we can see from the following ominous statement which I find near the end of Part I.: 'From this value, the electrostatical capacity per unit of length and the specific inductive capacity of the dielectric, could be determined. These points will, however, be more fully treated of in the second part of this paper.' Jenkin had in fact made a determination at Birkenhead of the specific inductive capacity of gutta-percha, or of the gutta-percha and Chatterton's compound constituting the insulation of the cable, on which he experimented. This was the very first true measurement of the specific inductive capacity of a dielectric which had been made after the discovery by Faraday of the existence of the property, and his primitive measurement of it for the three substances, glass, shellac, and sulphur; and at the time when Jenkin made his measurements the existence of specific inductive capacity was either unknown, or ignored, or denied, by almost all the scientific authorities of the day.

The original determination of the microfarad, brought out under the auspices of the British Association Committee on Electrical Standards, is due to experimental work by Jenkin, described in a paper, 'Experiments on Capacity,' constituting No. IV. of the appendix to the Report presented by the Committee to the Dundee Meeting of 1867. No other determination, so far as I know, of this important element of electric measurement has hitherto been made; and it is no small thing to be proud of in respect to Jenkin's fame as a scientific and practical electrician that the microfarad which we now all use is his.

The British Association unit of electrical resistance, on which was founded the first practical approximation to absolute measurement on the system of Gauss and Weber, was largely due to Jenkin's zeal as one of the originators, and persevering energy as a working member, of the first Electrical Standards Committee.

Robert Louis Stevenson
Classic Literature Library

All Pages of This Book